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On the Theory of the Ferrite Resonance Isolator”
E. SCHLOMANNT

Summary—The attenuation constants for both directions of
propagation in a rectangular wavegnide loaded with a small slab of
ferrite are calculated by means of perturbation theory. The maxi-
mum attainable ratio of reverse to forward attenuation is found to be
inversely proportional to the square of the bandwidth, with a con-
stant of proportionality that is dependent on the shape of the ferrite
slab and the proximity of cutoff. The figure of merit is largest for the
case of a thin ferrite slab magnetized perpendicular to the plane of
the slab. It is shown that a significant increase in the figure of merit
can be obtained by proper use of the anisotropy of grain-oriented
materials or single crystals.

1. INTRODUCTION

N this paper the inherent limitations of resonance

I
isolators will be considered. It has been known for

some time that the ratio of reverse to forward at-

tenuation cannot exceed a certain optimum value deter-

mined by the line width of the ferromagnetic resonance.1

The bandwidth of resonance isolators has apparently

not been considered in any detail up to now. It will be

shown that the bandwidth (defined as the frequency

range over which the reverse to forward ratio has at

least half of its maximum possible value) is proportional

to the width of the resonance, with a constant of propor-

tionality that is a rather sensitive function of the shape

of the ferrite slab, its magnetization, the frequency, and

the cutoff frequency of the waveguide. Under most con-

ditions, the bandwidth is appreciably smaller than the

width of the resonance line. It is shown, however, that

this situation can be reversed by proper use of magneto-

crystalline anisotropy. A device using this effect would

require a properly oriented single crystal or grain-

oriented polycrystalline material.

We shall consider only the case in which a rectangular

waveguide is used. It will be assumed that the cross sec-

tion of the ferrite slab is very small compared with the

cross section of the waveguide, so that a perturbation

approach can be used. For simplicity, it is assumed that

the unperturbed wave is a TE1O mode. It will also be as-

sumed that the ferrite slab or rod has an ellipsoidal cross

section. In practice, this configuration is realized by

means of circular rods or, approximately, by means of

thin slabs of rectangular cross section.

The performance of resonance isolators that use a

thin slab of ferrite magnetized in the plane of the slab

and perpendicular to the waveguide axis will be investi-
gated in Section II. The geometry of this case is shown

* Manuscript received by the PGMTT, August 2, 1959; revised
manuscript received, November 10, 1959.

~ Research Div., Raytheon Co., Waltharn, Mass.
1 B. Lax, “Frequency and loss characteristics of microwave ferrite

devices, ” PROC. IRE vol. 44, pp. 1368-1386; October, 1956.

in Fig. 1(a). In Section II 1, the results will be general-

ized to include the case in which the ferrite slab has an

elliptical but otherwise arbitrary cross section, in par-

ticular the geometry of Fig. 1(b). The generalization to

the case in which a grain-oriented material or a single

crystal is used is also given in this section. In Section IV,

various assumptions made in the development of the

theory will be critically evaluated.
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Fig. l—(a) Ferrite resonance isolator using a thin ferrite slab mag-
netized in the plane of the slab. (b) Ferrite resonance isolator us-
ing a thin ferrite slab magnetized perpendicular to the plane of
the slab. The perturbation theory (1) neglects the variation of
the microwave field over the ferrite region, and is valid c,nly if
the width of the slab is sufficiently small.

II. THEORY

Consider the geometry described in Fig. 1(a), If the

cross section of the ferrite slab is much smaller than the

cross section of the waveguide, the propagation constant

I’ in the presence of the ferrite slab can be calculated by

perturbation theory, with the resultl

r + ro* ~jZ*~ffZ. (1)

Here I’. is the propagation constant of the empty wave-

guide, which is assumed to be Iossless (i.e., 170:=j~o,

where PO is real). ~,ff is the effective susceptibility, and
+
h the RF magnetic field at the site of the ferrite slab.

The asterisk denotes the complex conjugate. For a thin

slab in the geometry of Fig. 1(a), the effective susceptibil-

ity calculated using a Landau-Lifshitz damping term is

* M
Xeff =

(-y’ + A’)H(H + 47rM) – w’+ 2jA(H + 27rM7

. (7’+ X’)H +jk!

(

jym \
)() 2

– jyu (-y’ + A’)(H + 4riW) + jk.oj

where the y-direction is the direction (of propagation

[see Fig. 1(a)], y is the gyromagnetic ratio and, k a

phenomenological loss parameter which is rellated to the

line width AH= 2XU0/(T2 +X2). A derivation of (2) is

given in Appendix I. The validity of the pherlomenologi-

cal description of losses will be discussed in Section IV.
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For a TEIO mode, the magnetic field is of the form

where co. is the cutoff frequency, q5 is determined by the

position of the slab in the waveguide, and + = O and

@= m correspond to the waveguide walls. In (3) the

choice of signs is appropriate for a wave propagating in

the +y-direction, if we let @= O characterize the left-

hand wall. In order to describe a wave propagating in

the – y-direction, the sign of the square root has to be

reversed. It should be noticed that in the geometry

shown and for propagation in the +y-direction, the

sense of rotation of the transverse magnetic field forms

a right-handed screw with the direction of the field,

Thus, the +y-direction is the reverse direction of the

isolator.

From (1), (2), and (3) one obtains the complex propa-

gation constant of the ferrite loaded waveguide. The

real part of r is the attenuation constant a. Since the

empty waveguide was assumed lossless, one finds after ~:m ~
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. ,g. ~—Graphical determination of the positions of the ferrite slab
trivial calculations for the reverse direction which maximize the reverse attenuation (d, ), minimize the for-

~reverse

M

- [(7’ + k’)H(H + 47rM) – co’]’+ [2A(H + 27rM)@]’

{
. (1” + X’)H’ + co’][(3’-‘lSin”
+ [(7’+ A’)(H + ki-ihf)’ + d] Cos’ @

(()+ 47(H + 27rM)c0 ~
)

– Isin@cos@ - (4)
Wc

The expression inside the braces can be written as

Psin2++ qcos2~+2Ysin@cos~

= +[(P+ d - (IJ– d cos.2++ 27sinW] (5)

where the explicit expressions for p, q, and r are obvious

from a comparison with (4), Thus, the condition for

maximum (or minimum) reverse attenuation is

– 2?’
tan 241 = — (6)

*–q”

Similarly, the condition for minimum (or maximum)
forward attenuation is

2Y
tan 242 = — (7)

*–q”

Fig. 2 demonstrates the relationship between the two

positions q51 and CP2.It is assumed in this figure that

q > P.WUnder these conditions 41 <h. It may be seen
from Fig. 2 that the position of the ferrite slab, which

maximizes themreverse attenuation, coincides with the

position, which minimizes the forward attenuation, only

ward attenuation (@z), or maximize the reverse to forward ratio
(do). The full line represents tan 20.

if @= q. Then @l =42 = 7r/4; i.e., the distance between

ferrite slab and waveguide wall is one quarter of the

width of the waveguide. In general, @l and 1$2differ from

7r/4 in opposite directions by equal amounts.

Similar results have been obtained by Suhl and Walk-

er,’ who have pointed out that the difference between

the energy stored at q5 in the left-handed wave and in

the right-handed wave is proportional to sin 24, The dif-

ference is largest at @= 7r/4 and ~ = 37r/4, so that large

nonreciprocal effects may be expected when the ferrite

slab is placed in one of these regions.

The ratio of the two attenuation constants is

(P+q)–(P –q)cos2@+2rsin 2@. (8)——
(P+q)–(P –~)c0S2@–2Ysin2@

It can be shown that R assumes a maximum with re-
spect to d at 40 where

co, 240 ==,
p+q

2~pq

sin 21jo = —
P+4J”

(9)

2 H. Suhl and L. R. Walker, “Topics in guided wave propagation
through gyromagnetic media, ” Bell Sys. Tech. J., vol. 33, pp. 939-
986; July, 1954. See p. 954.
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The maximum l?(o) is thus

Differentiating with respect to w, one finds that the

maximum with respect to w occurs at w = WO,where

C002 = (’p + X2)IZ(H + %M). (11)

It can be shown from (7) and (9) that at resonance, +0 is

very close to +2, the difference being of second order in

A/~. Fig. 2 illustrates a typical case, where the graphical

determination of the various angles for which the two

attenuation constants and their ratio are stationary

with respect to 0.

The maximum reverse to forward ratio is, from (10)

and (11),

In many cases 1 is much smaller than -y. Under these

conditions, the exac tformula (12) can be replaced by the

first terms of a power series expansion in (k/’y)’

(13)

Consider the frequency dependence of the reverse to

forward ratio in the vicinity of the resonance frequency.

Assume that the position of the ferrite slab has been

chosen in such a way that the maximum R is achieved.

From (8) it is possible to obtain, after trivial calcula-

tions (described in Appendix II),

RnmJLJo)
R(+o, co)= ——

1+[%3 “ ’14)
Here R~ax(wO) is as given in (12). In the denominator,

higher powers of w – WOare neglected. According to (14),

B is the range of frequencies over which R(@o, W) has at

least half its maximum value. It will henceforth be

called the bandwidth of the isolator. As shown in Ap-

pendix II, B to first order in A/y is given by

where a is the ratio of the transverse to the longitudinal

component of the magnetic field at the resonance fre-

quency (more precisely, the ratio of the transverse field

+ A’)(H + 4TM)’ + co’] + 2’-y(H + 27rM)w

+ A’)(H + 47rM)’ + co’] – 2i(H + 2TM); “
(lo)

at the center to the longitudinal field at the waveguide

wall).

(16)

A comparison of (13) and (15) shows that a large re-

verse to forward ratio can usually be obtained only at a

sacrifice of bandwidth, and vice versa. Therefore, it is

reasonable to take this fact into account in the definition

of the figure of merit of the isolator. In the existing liter-

ature, the reverse to forward ratio itself ha:j sometimes

been called the figure of merit. This is a reasonable

choice only if the bandwidth of the device is imma~erial.

We shall adopt a

figure of merit as

different convention

B2

()
F== Rm&x — .

Wo

and define the

(17)

A comparison of (13), (15), and (17) shows that with

this definition, the figure of merit is approximately inde-

pendent of the loss parameter X. If higher powers of

A/-y are neglected, one obtains

8
F = ———— ——–. (18)

1+$+$+ 1++ -——

( )@T::(:)

Since all terms in the denominator of (18) are positive,

the larger a and w are, and the smaller 34 is, the greater

the figure of merit becomes. If 27rJ1<<u/7, the last term

in the denominator is only a small correction. As a par-

ticular example, consider the case where the frequency

is 2800 mc and 27rill is 1000 gauss. Fo,r practical pur-

poses, a2 cannot be made larger than 3. For this particu-

lar value, the frequency equals twice the cutoff frequen-

cy for TIZ1O modes and is thus equal to the cutoff fre-

quency for TE20 modes. The figure of merit for az = 3

and for the given values of magnetization and frequency

is approximately 3.5.

III. GENERALIZATIONS

The theory presented in the previous section can
easily be generalized in such a way that it will apply to

situations in which the ferrite slab has an elliptical but

otherwise arbitrary cross section and the dc field is ap-

plied along an axis of the ellipse. In the latter situation,

the transverse demagnetizing field is 47ri!lN rather than
4mkI as previously. Here N is the transverse demagnet-
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izing factor.g Similarly, H must now be interpreted as

the internal or “demagnetized” field

H = H.pp – &Mlyz. (19)

Here N= is the longitudinal demagnetizing factor. All

significant results derived previously can be taken over

immediately if 47rliZ is replaced by 4TJZN. There are

minor exceptions to this rule, namely, the factors .M that

occur (2), (4), (30), and (31).4 It is easily seen, however,

that these factors cancel out in all the significant results,

such as the positions for minimum or maximum atten-

uations, maximum reverse to forward ratio, bandwidth,

and figure of merit. In particular, one obtains for the

figure of merit

8
F=

()

(20)

I+;+&+ 1+$
27rMiV “

‘d ()
(2.MN)2+ ~ 2

-i

Thus, for given a, .M, and co, the best figure of merit is

obtained when N is very small. This can be realized in

the situation described in Fig. 1(b), in which a thin

slab is placed on the bottom of the waveguide and mag-

netized in a direction which is perpendicular to the plane

of the slab. Under these conditions, the figure of merit for

az = 3 is approximately 5.75; i.e., 65 per cent larger than

the figure of merit calculated previously for the geom-

etry of Fig. 1(a).

M. T. Weiss6 has reported measurements of the per-

formance characteristics of resonance isolators using

rectangular waveguides and ferrite configurations which

are similar to those of Fig. 1. For the configuration of

Fig. 1(b) (“~-plane isolator”), he obtained the following

results: R~=x = 75, B/w O= 0.16. The figure of merit as ex-

perimentally determined is thus, according to (17),

F exp=2. The theoretical formula (20), on the other

hand, leads to F~h.or = 3.2. In this calculation we have
used a transverse demagnetizing factor appropriate for

a rod of ellipsoidal cross section with an axial ratio

equal to that of the rectangular slab used in the device.

The parameter a of (20) was deduced from the width

of the waveguide (0.9 inch) with the help of (16). Weiss

has also reported measurements on “E-plane isolators”

using configurations similar to Fig. 1(a). In these cases,

however, a dielectric slab with a high dielectric con-

stant was placed adjacent to the ferrite slab. The figures

of merit as deduced from his data for two such configu-

rations are 0.9 and 0.5, respectively. The theoretical

formula (20), on the other hand, predicts figures of merit

8 In the present notation, the sum of the three principal demagnet-
izing factors equals unity.

~ The notation in the present paper is such that M has the factor
m in all those cases in which it should be changed to MN. It does not
have this factor in all other cases.

s M. T. Weiss, “Improved rectangular waveguide resonance iso-
lators, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-4, pp. 240–243; October, 1956.

of approximately 2.7 and 2.2 in the two cases. It should

be remembered, however, that this formula does not

take into account the effect of the dielectric slab. For

this reason, the lack of agreement between theory and

experiment in the E-plane geometry is not too serious. It

thus appears that (20) is at least qualitatively appli-

cable for typical device configurations even though it

was derived on the basis of perturbation theory.

In the H-plane geometry of Fig. 1(b), the free pre-

cession of the magnetization vector follows a circular

cone. In the E-plane geometry of Fig. 1(a), however, the

circle is distorted by the transverse demagnetizing field

into an ellipse which has its major axis lying in the plane

of the slab; i.e., in the direction of propagation. Since

the figure of merit is larger in the H-plane geometry

than in the E-plane geometry, one may surmise that a

further increase in the figure of merit can be obtained

by forcing the free precession to follow an ellipsoidal

cone with the major axis of the ellipse oriented so that

it is perpendicular to the direction of propagation. The

calculation presented below shows that this is the case.

The ferrite slab must consist of a single crystal or of

grain-oriented polycrystalline material. In the presence

of crystalline anisotropy, the processing magnetization

generally follows an ellipsoidal cone, unless the dc field

is applied along an axis of high symmetry (like the [100]

or [111] axes of cubic crystals). The orientation of the

single crystal obviously has to be such that through

anisotropy forces the magnetization vector is repelled

more strongly from the y-direction than from the x-

direction. If the material has hexagonal crystal struc-

ture, the desired effect can be obtained if the first-order

anisotropy constant is negative (i. e., if the plane per-

pendicular to the hexagonal axis is energetically pre-

ferred over the axis). In this case, the orientation should

be such that the hexagonal axis coincides with” the

waveguide axis (y-direction). The desired effect can also

be obtained with cubic materials. In this case, the orien-

tation should be such that the field direction (z-direc-

tion) coincides with a [110] direction. If the first-order

cubic anisotropy constant is positive, a [100] direction

should be aligned with the waveguide axis; if it is nega-

tive, a [110] direction should be aligned with this axis.

We shall consider in detail only the case of a hexag-

onal material with a preferential plane. The generaliza-
tion to the cubic case is, however, very straightforward.
In the hexagonal case, the anisotropy repels the magnet-

ization only from the y-direction and has no effect in

the x-direction. The additional energy (per unit volume)

in this case is

(21)

where Ha= 2 I K1 I @f is the anisotropy field and CXUthe

directional cosine of the magnetization with the y-direc-

tion. This energy has to be added to the energy given in

(30). It is obvious that the energy appropriate for a
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situation in which the ferrite slab has a transverse de-

magnetizing factor N and the anisotropy is of the form

described above, is of essentially the same form as that

given in (30). It can be formally obtained from (30) if

H is replaced -by H+H. and 4Till is replaced by

47rllN – H.. Thus, all the significant results obtained

previously can be generalized by applylng the same rule.

In particular, the figure of merit now becomes

the Ferrite Resonance Isolator 203

susceptibility for circular polarization is essentially

given by~

-yM
x+(~) = —. (23)

@o— @+ j(wp — Wg)

Here ?VP and W, are functions of frequency and mag-

netic field which are discussed in an earlier paper.o It

can be shown that WP and TVq are non-negative, that

8
F=

()

(22)

1++++. 1++
Ha – 4TJWN

d ()
(H. – 43rMN)2 + 22 2

Y

A comparison of (20) and (22) shows immediately that

a significant increase in the figure of merit can be ob-

tained if (H. –47TMN) is much larger than 2u0/T. The

ultimate figure of merit according to (22) is

F,n,x = 16a4.

Thus, for a’= 3, F~.x = 144; i.e., a factor of 25 better

than the previous optimum value. In practice, it will be

very difficult to obtain this ultimate figure of merit be-

cause the internal magnetic field necessary to produce

resonance decreases to zero as the optimum condition

is approached. Thus it is eventually not strong enough

to magnetize the material. A numerical example that

can probably be realized is the following: 47rill = 2000

gauss, N= 1/20, Ha= 2000 oersteds, j= 2800 mc, az =3.

The internal magnetic field at resonance is 330 oersteds,

and the figure of merit is 17. If Ha= 3000 oersteds and

everything else is unchanged, the internal field at res-

onance is 210 oersteds, and the figure of merit is 27.5.

IV. DISCUSSION

The theory presented in the preceding sections makes

extensive use of a phenomenological description of

damping forces. This phenomenological approach can-

not be justified on a rigorous basis. It can be shown,

however, that a microscopic theory of some of the im-

portant loss mechanisms leads to essentially equivalent

results. A slight generalization is necessary: the loss

parameter A is, in general, a function of frequency and

internal magnetic field.

For a discussion of the resonance isolator, it is impor-

tant to consider the absorption of radiation which has

the negative sense of circular polarization. This absorp-

tion, although small, limits the reverse to forward ratio

of a resonance isolator. In a previous publications the
present author has developed a theory of line broaden-

ing in polycrystalline ferrites, and has briefly discussed

the absorption of radiation with the negative sense of
circular polarization. According to this theory, the

c E. Schlomann, “Spin-wave analysis of ferromagnetic resonance
in polycrystalline ferrites, ” -7. Phys. Chew. Solids, vol. 6, no 213, pp.
242-256 ; 1958.

WV is nonzero only for 0>0 (positive sense of circular

polarization), and that Wg is nonzero only for w <O

(negative sense of circular polarization). For the par-

ticular mechanism investigated in the earlier paper,G it

can also be shown that WP(U) is approximately equal to

JVQ( – co). The circular susceptibility for the negative

sense of polarization is obtained from (23) by inverting

the sign of w and taking the complex conjugate.

On the other hand, the circular susceptibility as cal-

culated from the phenomenological equations is

M ‘Y
x+(@) =

—— ——— ~ (24)

H–:
72 + i=

H–Q+j CUA
Y+.71 ‘Y ‘Y

A comparison of (23) and (24) shows immediately that

the two results are nearly equivalent if X/,y<<l and if

we allow X to be dependent on frequency and magnetic

field. In this sense, the phenomenological description

used in this paper is justified,

It is interesting to compare the bandwidth of the iso-

lator (as defined in Section II) with the width of the fer-

romagnetic resonance (i.e., the frequency range over

which the reverse attenuation has at least half (of its

maximum value). The width of the resonance can easily

be obtained from (4). The numerator of the right-hand

side of this equation is relatively insensitive to small

changes in frequency around the reSOnall Ce frequency.

The denominator, however, is very sensitive. One finds

that to first order in A/~, the half width of the resonance

for the geometry of Fig. 1(a) is

Au = 2L(H + 27rM) = 2A
d( )

N + (2~rM)2. (25)
‘Y

An expression appropriate for other geometries is ob-

tained by replacing M by .MN. It should be relmem-

7 Ibid., (42) and (43). The equation given in the present paper is
simplified by the assumption of vanishing “intr ins ic” loss and neglect
of the shift of the resonance frequency.
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bered, however, that the phenomenological constant X

is also dependent on the demagnetizing factor. The rea-

son for this is as follows: X depends primarily on the fre-

quency and the internal (demagnetized) magnetic field.

A change in the demagnetizing factor at fixed frequency

produces a change in the internal field at resonance. In

this way, A is implicitly dependent on N. The theory de-

scribed in the earlier world predicts that 1 should be

largest for the geometry of Fig. 1(a), smallest for the

geometry of Fig. l(b). A comparison of (25) with (15)

shows that for nonoriented polycrystalline material, the

bandwidth is at least a factor ~~ smaller than the

width of the resonance.

Consider finally the half width of the resonance de-

termined by varying the magnetic field at constant fre-

quency. From (4) one finds for the geometry of Fig. 1(a)

to first order in X/y

k-lo
AH=2—,

72
(26)

The same expression is valid for an arbitrary demagnet-

izing factor. It is thus also valid for the geometry of

Fig. 1(b). 13q. (26) shows that the phenomenological

parameter X appropriate for a given geometry can be

obtained experimentally by observing the line width
AH. The maximum reverse to forward ratio is there-

fore, from (13) and (26), approximately

()
2

Rma.x=165 .
yAEf

(27)

Here AH should be measured at the same frequency and

with the same geometry that is actually used in the iso-

lator.

The most significant results of the present investiga-

tion are the observation that the bandwidth is usually

appreciably smaller than the width of the resonance

line, and the prediction that the figure of merit can be

appreciably increased by proper use of grain-oriented

materials. Since these results are not at all obvious, it is

worthwhile to try to understand in a simple way the

reasons for this behavior.

In this connection, it is important to realize that the

forward attenuation plays a decisive part in determin-

ing the reverse to forward ratio. It is easily seen that at
resonance the condition for minimum forward attenua-

tion (7) coincides to first order in I/-y with the condi-

tion for maximum reverse to forward ratio (9). It is very

possible, therefore, that the bandwidth of the isolator is

not the same as the width of the resonance. The phe-

nomenon which primarily determines the bandwidth is

the frequency dependence of the ratio of the transverse

to the longitudinal components of the magnetic field,

because this effect gives rise to a rather strong frequen-

cy dependence of the forward attenuation. For this rea-

son the bandwidth is dependent, among other things, on

the ratio of the resonance frequency and the cutoff fre-

quency, and vanishes as this ratio approaches unity.

To obtain a better intuitive understanding of the sit-

uation, it is advantageous to consider the frequency de-

pendence of do, i.e., the position of the ferrite slab that

results in a maximum reverse to forward ratio. For the

geometry of Fig. 1(a), one finds from (9) and the re-

marks at the beginning of Appendix I I that @Ois deter-

mined by

(7’ + A’)(H + kilf)’ – cd’tan2$o=L=_
f [(72+ A2)H’ – c/]

[(:T-ll “ ’28)

By straightforward differentiation, one obtains the

fractional change of tan q50, divided by the fractional

change of the frequency taken at resonance.

-1 2.M
— – 1+++

d I

(29)

I

, (~=~)’ + ‘o’
y’ + k’

This equation can again be generalized to the case of a

ferrite slab with an arbitrary transverse demagnetizing

factor N and an anisotropy field Ha by replacing 47rlW

by 47rilZN – Ha. Eq. (29) shows that the frequency de-

pendence of 00 is weakest for large a and small N. By

proper use of grain-oriented materials, the sign of the last

term of (29) can effectively be reversed. In the limit as

Ha>>2uo/-y this term approaches – 1. It is thus seen

that the frequency dependence of q30can be significantly

reduced by the use of grain-oriented materials. It is

easy to believe, therefore, that the figure of merit of the

isolator should be improved in a similar way.

APPENDIX I

EFFECTIVE SUSCEPTIBILITY OF A THIN SLAB

The equation of motion can be derived conveniently

from the energy (per unit volume) necessary to pull the

magnetization vector out of the z-direction into a direc-

tion characterized by the two directional cosines, a%

and au. This energy is for a thin slab in the geometry of

Fig. 1 (a) and for aw, au<<l.

The equations of motion are now

(31)

If the driving field has a periodic time dependence

(~e@’), one obtains from (30) and (31)
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By solving (32) for a= and a., it is easy to obtain the ef-

fective susceptibility given in (2). The same result can

also be derived by converting the “true” susceptibility

x (as calculated using a Landau-Lifshitz damping

term) to the effective susceptibility by using the formula

* +x-+ *
Xeff = (1 + 4TXN)–lX. (33)

APPENDIX II

ISOLATOR BANDIVIDTH

In evaluating the bandwidth, it is convenient to use

the left-hand side of (5), thus expressing R in terms of

cos ~ and sin ~ rather than cos 2+ and sin 24. Since (9) is

equivalent to

——

‘4 P
Cos 1#11)= — sin @o =

d
;& (34)

P+q

one obtains from (5) and (8)

N(o)
lz(lj)o, co) = —

D(a)

where

(35)

N(u) = [(T2 + X2)H2 + u’] [(y’ + k’) (H + 47rM)2 + m’]

“[(9-11
+ [(Y’+ A2)H2+ @o’] [(7 + A2)(H+ 4rM)2 + w’]

“[H’-‘1

and ‘D(u) is obtained from N(m) by reversing the sign

of ‘y.

Now let u = a, +3N. Neglecting higher powers of &o,

one finds

[(3’-‘I’’’=”{’+*-%3 ‘3’)
where

‘V’H~o 2
a= –1

@c

is the ratio of the amplitudes of the transverse and longi-

tudinal components of the magnetic field. Expanding

N(a) in powers of &o, one obtains

N(oJ) = NO + N,(k) + Nz.(ih)2+ ~. . (38)

where

( Y
No = 8(-y2 + A’)(IZ + 2~M)2c002az 1 + -======

~Tz + ~2
)

N1 = 8(Y’ + A’)(II + 2~M)2coO(2a2 + 1)

JV2 = 4(7J + X9)(H + 27rM)

{
. (4H + 127rM)a2 + (312 + 10rM)

From (35), (38), and (39) the reverse to forward ratio is

{
. [(T2+ A2)H2 + W12][(T2+ X2)(H + 47rM)2 +tio2]

“K3-11[(3’-’I}”2‘3’)where

((4H + 12rM)a’ + (311 + 10rM) + ~v~ (H + 27rM) 2a2 + 1 – ~)

cq =

(
2 (H -1- 22rM)a0’a’ 1 +

‘Y

dyz + A2)

(41)
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and pa is obtained from az by reversing the sign of ~. It limit X/y<<l. The az term of (42) can be neglected if
is obvious from (41) that ~z is much larger than C22for only the lowest order of A/~ is taken into account. In
A/y<<l. For this reason an expansion of R in powers of this approximation

&o converges very slowly, but an expansion of l/R in

powers of 8W should converge rapidly. If higher powers 2(k/7)%02
B2=A= . (43)

of 13ware again neglected, (14) is obtained from (40) and b2

()
1+:+;+ 1+~

2irM

()

’22 a2 H + 21rM
= /3, – CYz.

T
(42)

Eq. (15) is now obtained by expressing H in terms of
A simple expression for the bandwidth is obtained in the the resonance frequency.

Analysis of Microwave Measurement Techniques by

Means of Signal Flow Graphs*
J. K. HUNTON~

Summary—Microwave measurement techniques can be analyzed
more simply by using signal flow graphs instead of the customary
scattering matrices to describe the microwave networks used in the
measuring system. Thk is because the flow graphs of indkidual
networks are simply joined together when the networks are cas-
caded and the solution for the system can be written down by in-
spection of the over-all flow graph by application of the nontouchmg
loop rule. Thk paper reviews the method of setting up flow graphs
of microwave networks and the rule for their solution. A single di-
rectional-coupler reflectometer system for measuring the reflection
coefficient of a load is then analyzed by this method. The analysis
shows how auxiliary tuners can be used to cancel residual error
terms in the measurement of the magnitude of the reflection coeffi-
cient at a particular frequency. The analysis also shows how an addl-

tional tuner can be used to measure the phase angle of the reflection
coefficient. These reflectometer techniques are particularly useful
in the measurement of very small reflections.

INTRODUCTION

T

HE signal flow graph is a method of writing a set

of equations, whereby the variables are repre-

sented by points and the interrelations by directed
lines giving a direct picture of signal flow. The algebra

of flow graphs leading to solutions by direct inspection

has been developed by S. J. Nlason and others at the

IJfassachusetts Institute of Technology.1’2 When micro-

wave network equations are written in scattering matrix

form the corresponding flow graph is particularly useful

because, in this case, the flow graph of a system of cas-

* Manuscript received by the PGMT, September 14, 1959; re-
vised manuscript received November 2.5,1959.

t Hewlett-Packard Co., Palo Alto, Calif.
1S. J. Mason, “Feedback theory—some properties of signal

flow graphs,” PROC. IRE, vol. 41, p. 1144-1156; September 1953.
2 S. J. Mason, “Feedback theory—further properties of signal

flow graphs, ” PROC. IRE, vol. 44, pp. 920-926; July, 1956.

caded networks k constructed simply by joining to-

gether the flow graphs of the individual networks, and

the solution is then available directly.

One of the best applications of the flow graph method

is in the analysis of measuring techniques and the de-

termination of residual errors. It is the intention here to

review the mechanics of the method and to apply it in

analyzing the microwave reflectometer system used for

measuring the reflection coefficient of a load. This sys-

tem has been in general use for some time,3 and has been

analyzed recently by Engen and Beatty4 who showed

how tuners could be used to reduce residual errors to a

negligible value when measuring the magnitude of the

reflection coefficient. Their result will be derived here by

the flow graph method. In addition, a technique for

measuring the phase angle of the reflection coefficient

will be presented.

ONE- AND TWO-PORT NETWORK FLOW GRAPEIS

Fig. 1 shows some simple flow graphs used as building

blocks. In Fig. 1(a) the general two-port network is

shown as specified by its scattering matrix coefficients.

Here al and az are the complex entering wave ampli-

tudes, while bl and bt are the outgoing wave amplitudes

at ports 1 and 2 of the network. These are represented
in the flow graph as points or “nodes.” The nodes are

3 J. K. Hunton and N. L. Pappas, “The -hp- microwave reflectOrn-
eters, ” Hewlett-Packard J., vol. 6, pp. 1–7; September–October;
1954.

1 G. F. Engen and R. W. Beatty, “Microwave reflectometer tech-
“ IRE TRANS. ON MICROWAVE THEORY AND TECHiWQUES,

&o~&TT-7, pp. 351–355; July 1959.


