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On the Theory of the Ferrite Resonance Isolatot”
E. SCHLOMANNY

Summary—The attenuation constants for both directions of
propagation in a rectangular waveguide loaded with a small slab of
ferrite are calculated by means of perturbation theory. The maxi-
mum attainable ratio of reverse to forward attenuation is found to be
inversely proportional to the square of the bandwidth, with a con-
stant of proportionality that is dependent on the shape of the ferrite
slab and the proximity of cutoff. The figure of merit is largest for the
case of a thin ferrite slab magnetized perpendicular to the plane of
the slab. It is shown that a significant increase in the figure of merit
can be obtained by proper use of the anisotropy of grain-oriented
materials or single crystals.

I. INTRODUCTION

isolators will be considered. It has been known for

some time that the ratio of reverse to forward at-
tenuation cannot exceed a certain optimum value deter-
mined by the line width of the ferromagnetic resonance.?
The bandwidth of resonance isolators has apparently
not been considered in any detail up to now. It will be
shown that the bandwidth (defined as the frequency
range over which the reverse to forward ratio has at
least half of its maximum possible value) is proportional
to the width of the resonance, with a constant of propor-
tionality that is a rather sensitive function of the shape
of the ferrite slab, its magnetization, the frequency, and
the cutoff frequency of the waveguide. Under most con-
ditions, the bandwidth is appreciably smaller than the
width of the resonance line. It is shown, however, that
this situation can be reversed by proper use of magneto-
crystalline anisotropy. A device using this effect would
require a properly oriented single crystal or grain-
oriented polycrystalline material.

We shall consider only the case in which a rectangular
waveguide is used. It will be assumed that the cross sec-
tion of the ferrite slab is very small compared with the
cross section of the waveguide, so that a perturbation
approach can be used. For simplicity, it is assumed that
the unperturbed wave'is a TE;y mode. It will also be as-
sumed that the ferrite slab or rod has an ellipsoidal cross
section. In practice, this configuration is realized by
means of circular rods or, approximately, by means of
thin slabs of rectangular cross section.

The performance of resonance isolators that use a
thin slab of ferrite magnetized in the plane of the slab
and perpendicular to the waveguide axis will be investi-
gated in Section II. The geometry of this case is shown

']i[N this paper the inherent limitations of resonance
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in Fig. 1(a). In Section III, the results will be general-
ized to include the case in which the ferrite slab has an
elliptical but otherwise arbitrary cross section, in par-
ticular the geometry of Fig. 1(b). The generalization to
the case in which a grain-oriented material or a single
crystal is used is also given in this section. In Section IV,
various assumptions made in the development of the
theory will be critically evaluated.
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Fig. 1—(a) Ferrite resonance isolator using a thin ferrite slab mag-
netized in the plane of the slab. (b) Ferrite resonance isolator us-
ing a thin ferrite slab magnetized perpendicular to the plane of
the slab. The perturbation theory (1) neglects the variation of
the microwave field over the ferrite region, and is valid only if
the width of the slab is sufficiently small.

Il. THEORY

Consider the geometry described in Fig. 1(a). If the
cross section of the ferrite slab is much smaller than the
cross section of the waveguide, the propagation constant
T in the presence of the ferrite slab can be calculated by
perturbation theory, with the result!

D o
T 4 To* ~ jh*xessh. (1)

Here T'y is the propagation constant of the empty wave-
guide, which is assumed to be lossless (i.e., I'¢=3jB,,
where By is real). (et is the effective susceptibility, and
N

h the RF magnetic field at the site of the ferrite slab.
The asterisk denotes the complex conjugate. For a thin
slab in the geometry of Fig. 1(a), the effective susceptibil-
ity calculated using a Landau-Lifshitz damping term is

o M
Xt = P T NYH(H + 4 M) — o + GNH + 20M)
. ((72 + N H + o Jve \) @
— jyw (v?+ A (H -+ 47 M) + jrw,

where the y-direction is the direction of propagation
[see Fig. 1(a)], v is the gyromagnetic ratio and \ a
phenomenological loss parameter which is related to the
line width AH =2\wo/(y*+A?). A derivation of (2) is
given in Appendix I. The validity of the pheriomenologi-
cal description of losses will be discussed in Section IV.
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For a TEy, mode, the magnetic field is of the form

W 2
by =7 /‘/(;) — 1 sin ¢er?,

fy = cos geivt, (3)

where w, is the cutoff frequency, ¢ is determined by the
position of the slab in the waveguide, and ¢=0 and
¢=m correspond to the waveguide walls. In (3) the
choice of signs is appropriate for a wave propagating in
the 4y-direction, if we let ¢ =0 characterize the left-
hand wall. In order to describe a wave propagating in
the —y-direction, the sign of the square root has to be
reversed. It should be noticed that in the geometry
shown and for propagation in the -y-direction, the
sense of rotation of the transverse magnetic field forms
a right-handed screw with the direction of the field.
Thus, the +y-direction is the reverse direction of the
isolator.

From (1), (2), and (3) one obtains the complex propa-
gation constant of the ferrite loaded waveguide. The
real part of I' is the attenuation constant a. Since the
empty waveguide was assumed lossless, one finds after
trivial calculations for the reverse direction

areverse

M
[(v2 + A)H(H + 4xM) — ?]* + [2A(H + 20M)w]?

: {(72 FANH? + o] [(%)2 —~ 1] sin? ¢

+ [(v2 + ) (H + 40M)? + ?] cos? ¢

T dy(H + 20 M) 1/ (%) - lsin¢cos¢}>- )

The expression inside the braces can be written as
P sin®? ¢ - gcos? ¢ + 2r sin¢ cos ¢
=3+ 9 — (» — ¢ cos2¢ + 2rsin2¢] (5)

where the explicit expressions for p, ¢, and 7 are obvious
from a comparison with (4). Thus, the condition for
maximum (or minimum) reverse attenuation is

— 27

~

tan 2¢, = (6)
p—q

Similarly, the condition for minimum (or maximum)

forward attenuation is

2r

tan 2¢, = (7N

?—q
Fig. 2 demonstrates the relationship between the two
positions ¢1 and ¢, It is assumed in this figure that
g>p.wUnder these conditions ¢; <¢s. It may be seen
from Fig. 2 that the position of the ferrite slab, which
maximizes the reverse attenuation, coincides with the
position, which minimizes the forward attenuation, only
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Fig. 2—Graphical determination of the positions of the ferrite slab
which maximize the reverse attenuation (¢:), minimize the for-
ward attenuation (¢2), or maximize the reverse to forward ratio
(¢o). The full line represents tan 2¢.

if p=g. Then ¢p1=¢s=7/4; i.e., the distance between
ferrite slab and waveguide wall is one quarter of the
width of the waveguide. In general, ¢; and ¢, differ from
/4 in opposite directions by equal amounts.

Similar results have been obtained by Suhl and Walk-
er,2 who have pointed out that the difference between
the energy stored at ¢ in the left-handed wave and in
the right-handed wave is proportional to sin 2¢. The dif-
ference is largest at ¢ =m/4 and ¢ =37 /4, so that large
nonreciprocal effects may be expected when the ferrite
slab is placed in one of these regions.

The ratio of the two attenuation constants is

areverse

R(g, ) =

A forward

_(p+ g — (p — g cos 29 + 2rsin 2¢
(»+q) — (p — q) cos 2¢ — 2r sin 2¢

(8

It can be shown that R assumes a maximum with re-
spect to ¢ at ¢, where

?—q

cos 2¢p = 5

R

. 2v/pg
sin 2¢9 = ——~ - (9)

" pta

2 H. Suhl and L. R. Walker, “Topics in guided wave propagation
through gyromagnetic media,” Bell Sys. Tech. J., vol. 33, pp. 939—
986; July, 1954. See p. 954.
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The maximum R(w) is thus
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Rypox(w) =

Npg+ _ V][ + N+ 0] [(v2 + A (H + 4 M)2 + 2] + 2y(H + 20 M)w

Vg — 1

Differentiating with respect to w, one finds that the
maximum with respect to w occurs at w=wo, where

wo? = (v + \)H(H + 4xM). (11)
It can be shown from (7) and (9) that at resonance, ¢, is
very close to ¢s, the difference being of second order in
N\/v. Fig. 2 illustrates a typical case, where the graphical
determination of the various angles for which the two
attenuation constants and their ratio are stationary
with respect to ¢.

The maximum reverse to forward ratio is, from (10)
and (11),

VYR F Nty

Rmax(w ) = —_—
VP Ny

(12)

In many cases A is much smaller than . Under these
conditions, the exac tformula (12) can be replaced by the
first terms of a power series expansion in (\/7)?

1 A
R T

L (13)

4~2
Rmax(w) =~ F‘ + 2 —

Consider the frequency dependence of the reverse to
forward ratio in the vicinity of the resonance frequency.
Assume that the position of the ferrite slab has been
chosen in such a way that the maximum R is achieved.
From (8) it is possible to obtain, after trivial calcula-
tions (described in Appendix II),

R{o, @) = — Ruax(0) 0
1+ [2_(«)_;_ ﬂ’l] ;

(14)

Here Rmax(wo) is as given in (12). In the denominator,
higher powers of w —w, are neglected. According to (14),
B is the range of frequencies over which R(¢o, w) has at
least half its maximum value. It will henceforth be
called the bandwidth of the isolator. As shown in Ap-
pendix II, B to first order in \/7y is given by

)\ 2
2 <~—) w02
Y
1 1 1 2 M
14+—+—+ <1+—>
a 2a*

) o ()

where @ is the ratio of the transverse to the longitudinal
component of the magnetic field at the resonance fre-
quency (more precisely, the ratio of the transverse field

(15)

VIGE+ B+ o[(7 + N (H + 4nM)? + o] — 20(H + M)

(10)

at the center to the longitudinal field at the waveguide

wall).
2
a= 4/ <ﬁ> — 1.
We

A comparison of (13) and (15) shows that a large re-
verse to forward ratio can usually be obtained only at a
sacrifice of bandwidth, and vice versa. Therefore, it is
reasonable to take this fact into account in the definition
of the figure of merit of the isolator. In the existing liter-
ature, the reverse to forward ratio itself has sometimes
been called the figure of merit. This is a reasonable
choice only if the bandwidth of the device is immaterial.
We shall adopt a different convention and define the

figure of merit as
B 2
P = R (2).
wo

A comparison of (13), (15), and (17) shows that with
this definition, the figure of merit is approximately inde-
pendent of the loss parameter N. If higher powers of
\/v are neglected, one obtains

(16)

(17

F=

8
(18)

1 1 1 2 M
14—+ +<1+—> —
a

a’ 2a* 2 /‘/<27TM)2_+ <%>2

Since all terms in the denominator of (18) are positive,
the larger @ and w are, and the smaller M/ is, the greater
the figure of merit becomes. If 27 M <<w/7, the last term
in the denominator is only a small correction. As a par-
ticular example, consider the case where the frequency
is 2800 mc and 27 M is 1000 gauss. For practical pur-
poses, a® cannot be made larger than 3. For this particu-
lar value, the frequency equals twice the cutoff frequen-
cy for TE; modes and is thus equal to the cutoff fre-
quency for TEs modes. The figure of merit for a?=3
and for the given values of magnetization and frequency
is approximately 3.5.

I1I. GENERALIZATIONS

The theory presented in the previous section can
easily be generalized in such a way that it will apply to
situations in which the ferrite slab has an elliptical but
otherwise arbitrary cross section and the dc field is ap-
plied along an axis of the ellipse. In the latter situation,
the transverse demagnetizing field is 4w M N rather than
47 M as previously. Here N is the transverse demagnet-
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izing factor.? Similarly, H# must now be interpreted as
the internal or “demagnetized” field

H = H,, — 4rMN,. (19)
Here N, is the longitudinal demagnetizing factor. All
significant results derived previously can be taken over
immediately if 47 M is replaced by 47 MN. There are
minor exceptions to this rule, namely, the factors M that
occur (2), (4), (30), and (31).* It is easily seen, however,
that these factors cancel out in all the significant results,
such as the positions for minimum or maximum atten-
uations, maximum reverse to forward ratio, bandwidth,
and figure of merit. In particular, one obtains for the
figure of merit

8
F:

1+ 1—I— ! +(1+1>
a® 2qt a?

. (20)
2rMN

=6

Thus, for given a, M, and w, the best figure of merit is
obtained when N is very small. This can be realized in
the situation described in Fig. 1(b), in which a thin
slab is placed on the bottom of the waveguide and mag-
netized in a direction which is perpendicular to the plane
of the slab. Under these conditions, the figure of merit for
a*=23 is approximately 5.75; .e., 65 per cent larger than
the figure of merit calculated previously for the geom-
etry of Fig. 1{(a).

M. T. Weiss® has reported measurements of the per-
formance characteristics of resonance isolators using
rectangular waveguides and ferrite configurations which
are similar to those of Fig. 1. For the configuration of
Fig. 1(b) (“H-plane isolator”), he obtained the following
results: Rmax =75, B/wy=0.16. The figure of merit as ex-
perimentally determined is thus, according to (17),
Fexp=2. The theoretical formula (20), on the other
hand, leads to Fipeor = 3.2. In this calculation we have
used a transverse demagnetizing factor appropriate for
a rod of ellipsoidal cross section with an axial ratio
equal to that of the rectangular slab used in the device.
The parameter ¢ of (20) was deduced from the width
of the waveguide (0.9 inch) with the help of (16). Weiss
has also reported measurements on “E-plane isolators”
using configurations similar to Fig. 1(a). In these cases,
however, a dielectric slab with a high dielectric con-
stant was placed adjacent to the ferrite slab. The figures
of merit as deduced from his data for two such configu-
rations are 0.9 and 0.5, respectively. The theoretical
formula (20), on the other hand, predicts figures of merit

% In the present notation, the sum of the three principal demagnet-
izing factors equals unity.

4 The notation in the present paper is such that M has the factor
= in all those cases in which it should be changed to MN. It does not
have this factor in all other cases.

5 M. T. Weiss, “Improved rectangular waveguide resonance iso-
lators,” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-4, pp. 240-243; October, 1956.
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of approximately 2.7 and 2.2 in the two cases. It should
be remembered, however, that this formula does not
take into account the effect of the dielectric slab. For
this reason, the lack of agreement between theory and
experiment in the E-plane geometry is not too serious. It
thus appears that (20) is at least qualitatively appli-
cable for typical device configurations even though it
was derived on the basis of perturbation theory.

In the H-plane geometry of Fig. 1(b), the free pre-
cession of the magnetization vector follows a circular
cone. In the E-plane geometry of Fig. 1(a), however, the
circle is distorted by the transverse demagnetizing field
into an ellipse which has its major axis lying in the plane
of the slab; s.e., in the direction of propagation. Since
the figure of merit is larger in the H-plane geometry
than in the E-plane geometry, one may surmise that a
further increase in the figure of merit can be obtained
by forcing the free precession to follow an ellipsoidal
cone with the major axis of the ellipse oriented so that
it is perpendicular to the direction of propagation. The
calculation presented below shows that this is the case.
The ferrite slab must consist of a single crystal or of
grain-oriented polycrystalline material. In the presence
of crystalline anisotropy, the precessing magnetization
generally follows an ellipsoidal cone, unless the dc field
is applied along an axis of high symmetry (like the [100]
or [111] axes of cubic crystals). The orientation of the
single crystal obviously has to be such that through
anisotropy forces the magnetization vector is repelled
more strongly from the y-direction than from the x-
direction. If the material has hexagonal crystal struc-
ture, the desired effect can be obtained if the first-order
anisotropy constant is negative (i.e., if the plane per-
pendicular to the hexagonal axis is energetically pre-
ferred over the axis). In this case, the orientation should
be such that the hexagonal axis coincides with the
waveguide axis (y-direction). The desired effect can also
be obtained with cubic materials. In this case, the orien-
tation should be such that the field direction (z-direc-
tion) coincides with a [110] direction. If the first-order
cubic anisotropy constant is positive, a [100] direction
should be aligned with the waveguide axis; if it is nega-
tive, a [110] direction should be aligned with this axis.

We shall consider in detail only the case of a hexag-
onal material with a preferential plane. The generaliza-
tion to the cubic case is, however, very straightforward.
In the hexagonal case, the anisotropy repels the magnet-
ization only from the y-direction and has no effect in
the x-direction. The additional energy (per unit volume)
in this case is

M

Eonis = Y Ho? (21)

where Ha=2lK1[ /M is the anisotropy field and «, the
directional cosine of the magnetization with the y-direc-
tion. This energy has to be added to the energy given in
(30). It is obvious that the energy appropriate for a



1960

situation in which the ferrite slab has a transverse de-
magnetizing factor N and the anisotropy is of the form
described above, is of essentially the same form as that
given in (30). It can be formally obtained from (30) if
H is replaced by H-+H, and 4xM is replaced by
47 MN — H,. Thus, all the significant results obtained
previously can be generalized by applylng the same rule.
In particular, the figure of merit now becomes

F =
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susceptibility for circular polarization is essentially
given by’

M
wo— @+ j(W, — W)
Here W, and W, are functions of frequency and mag-

netic field which are discussed in an earlier paper.® It
can be shown that W, and W, are norn-negative, that

x+(w) = (23)

(22)

1+ ! + ! ( >
a? 2a* a?

A comparison of (20) and (22) shows immediately that
a significant increase in the figure of merit can be ob-
tained if (H,—4mMN) is much larger than 2w,/7y. The
ultimate figure of merit according to (22) is

Fmax. = 16(14.

Thus, for a2=3, Fuex=144; 1.e., a factor of 25 better
than the previous optimum value. In practice, it will be
very difficult to obtain this ultimate figure of merit be-
cause the internal magnetic field necessary to produce
resonance decreases to zero as the optimum condition
is approached. Thus it is eventually not strong enough
to magnetize the material. A numerical example that
can probably be realized is the following: 473 = 2000
gauss, N=1/20, H,=2000 oersteds, f=2800 mc, a?=3.
The internal magnetic field at resonance is 330 oersteds,
and the figure of merit is 17. If H,=3000 oersteds and
everything else is unchanged, the internal field at res-
onance is 210 oersteds, and the figure of merit is 27.5.

IV. DiscussioN

The theory presented in the preceding sections makes
extensive use of a phenomenological description of
damping forces. This phenomenological approach can-
not be justified on a rigorous basis. It can be shown,
however, that a microscopic theory of some of the im-
portant loss mechanisms leads to essentially equivalent
results. A slight generalization is necessary: the loss
parameter M is, in general, a function of frequency and
internal magnetic field.

For a discussion of the resonance isolator, it is impor-
tant to consider the absorption of radiation which has
the negative sense of circular polarization. This absorp-
tion, although small, limits the reverse to forward ratio
of a resonance isolator. In a previous publication,® the
present author has developed a theory of line broaden-
ing in polycrystalline ferrites, and has briefly discussed
the absorption of radiation with the negative sense of
circular polarization. According to this theory, the

6 E. Schlémann, “Spin-wave analysis of ferromagnetic resonance
in polycrystalline ferrites,” J. Pkys. Chem. Solids, vol. 6, no 213, pp.
242-256; 1958.

H, — 47 MN

4/(11 — 47 MN)? + (2»—>2

W, is nonzero only for w>0 (positive sense of circular
polarization), and that W, is nonzero only for w<0
(negative sense of circular polarization). For the par-
ticular mechanism investigated in the earlier paper,’ it
can also be shown that W,(w) is approximately equal to
W,(—w). The circular susceptibility for the negative
sense of polarization is obtained from (23) by inverting
the sign of w and taking the complex conjugate.

On the other hand, the circular susceptibility as cal-
culated from the phenomenological equations is

LRI
M - M
Y
=] =l * 24
x+(©) T — @
H — - H— o+ ju—
v+ A v v

A comparison of (23) and (24) shows immediately that
the two results are nearly equivalent if A/ y<<1 and if
we allow A to be dependent on frequency and magnetic
field. In this sense, the phenomenological description
used in this paper is justified.

It is interesting to compare the bandwidth of the iso-
lator (as defined in Section IT) with the width of the fer-
romagnetic resonance (z.e., the frequency range over
which the reverse attenuation has at least half of its
maximum value). The width of the resonance can easily
be obtained from (4). The numerator of the right-hand
side of this equation is relatively insensitive to small
changes in frequency around the resonance frequency.
The denominator, however, is very sensitive. One finds
that to first order in A/, the half width of the resonance
for the geometry of Fig. 1(a) is

Aw = IN(H + 20 M) = 20 1/(%)4; (2rM)2. (25)

An expression appropriate for other geometries is ob-
tained by replacing M by MN. It should be remem-

7 Ibid., (42) and (43). The equation ngen in the present paper is
simplified by the assumption of vanishing “intrinsic” loss and neglect
of the shift of the resonance frequency.
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bered, however, that the phenomenological constant A
is also dependent on the demagnetizing factor. The rea-
son for this is as follows: N depends primarily on the fre-
quency and the internal (demagnetized) magnetic field.
A change in the demagnetizing factor at fixed frequency
produces a change in the internal field at resonance. In
this way, A is implicitly dependent on N. The theory de-
scribed in the earlier work® predicts that N should be
largest for the geometry of Fig. 1(a), smallest for the
geometry of Fig. 1(b). A comparison of (25) with (15)
shows that for nonoriented polycrystalline material, the
bandwidth is at least a factor /2 smaller than the
width of the resonance.

Consider finally the half width of the resonance de-
termined by varying the magnetic field at constant fre-
quency. From (4) one finds for the geometry of Fig. 1(a)
to first order in A/

)\wo

AH =2~ (26)

Y
The same expression is valid for an arbitrary demagnet-
izing factor. It is thus also valid for the geometry of
Fig. 1(b). Eq. (26) shows that the phenomenological
parameter A appropriate for a given geometry can be
obtained experimentally by observing the line width
AH., The maximum reverse to forward ratio is there-
fore, from (13) and (26), approximately

&0 ) 27)

vyAH

Rupax = 16<

Here AH should be measured at the same frequency and
with the same geometry that is actually used in the iso-
lator.

The most significant results of the present investiga-
tion are the observation that the bandwidth is usually
appreciably smaller than the width of the resonance
line, and the prediction that the figure of merit can be
appreciably increased by proper use of grain-oriented
materials. Since these results are not at all obvious, it is
worthwhile to try to understand in a simple way the
reasons for this behavior.

In this connection, it is important to realize that the
forward attenuation plays a decisive part in determin-
ing the reverse to forward ratio. It is easily seen that at
resonance the condition for minimum forward attenua-
tion (7) coincides to first order in A/y with the condi-
tion for maximum reverse to forward ratio (9). It is very
possible, therefore, that the bandwidth of the isolator is
not the same as the width of the resonance. The phe-
nomenon which primarily determines the bandwidth is
the frequency dependence of the ratio of the transverse
to the longitudinal components of the magnetic field,
because this effect gives rise to a rather strong frequen-
cy dependence of the forward attenuation. For this rea-
son the bandwidth is dependent, among other things, on
the ratio of the resonance frequency and the cutoff fre-
quency, and vanishes as this ratio approaches unity.
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To obtain a better intuitive understanding of the sit-
uation, it is advantageous to consider the frequency de-
pendence of ¢,, i.e., the position of the ferrite slab that
results in a maximum reverse to forward ratio. For the
geometry of Fig. 1(a), one finds from (9) and the re-
marks at the beginning of Appendix II that ¢, is deter-
mined by

2 )\2H 4M2_ 2
tan%o:_q_: (v + N (H + 4 M)? — . (28)

(v + A)E? — o] [(%)2_ 1}

By straightforward differentiation, one obtains the
fractional change of tan ¢,, divided by the fractional
change of the frequency taken at resonance.

wo 4 tan ¢,
tan (]50 dco we=wg
2n M
. j1 g (20)

VAC m

This equation can again be generalized to the case of a
ferrite slab with an arbitrary transverse demagnetizing
factor N and an anisotropy field H, by replacing 47w M
by 4rMN—H, Eq. (29) shows that the frequency de-
pendence of ¢, is weakest for large @ and small V. By
proper use of grain-oriented materials, the sign of the last
term of (29) can effectively be reversed. In the limit as
H,>2w,/v this term approaches —1. It is thus seen
that the frequency dependence of ¢, can be significantly
reduced by the use of grain-oriented materials. It is
easy to believe, therefore, that the figure of merit of the
isolator should be improved in a similar way.

AprPENDIX I
EFFECTIVE SUSCEPTIBILITY OF A THIN SLAB

The equation of motion can be derived conveniently
from the energy (per unit volume) necessary to pull the
magnetization vector out of the z-direction into a direc-
tion characterized by the two directional cosines, «,
and oy. This energy is for a thin slab in the geometry of
Fig. 1(a) and for a,, ,<1.

M
E = 7{ (H 4 4xM)a? + Halt) — M(ah, + k). (30)
The equations of motion are now
dE dE
Ma,= —v—— N —
Oay doy
Ma, oE \ dE G31)
=y — A —
do day

If the driving field has a periodic time dependence
(~eft), one obtains from (30) and (31)

[joo + N(H + 4w M) ]y + vHay = vhy + N

v(H 4+ d4xd) e, — |jw + NH]ay = vhs — Nby.  (32)
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By solving (32) for a; and a, it is easy to obtain the ef-
fective susceptibillty given in (2). The same result can
also be derived by converting the “true” susceptibility
«—>

x (as calculated using a Landau-Lifshitz damping
term) to the effective susceptibility by using the formula

> > o>
xett = (1 + 4axN)x. (33)

ArpeENDIX II

[SOLATOR BANDWIDTH

In evaluating the bandwidth, it is convenient to use
the left-hand side of (5), thus expressing R in terms of
cos ¢ and sin ¢ rather than cos 2¢ and sin 2¢. Since (9) is
equivalent to

p . g
cos ¢ =4/ sin ¢g = 4/———— 34
' p+q e p+q (34
one obtains from (5) and (8)
Rlpo, ) = (35)
TR

where

N@) = [0* + ME + ][(v* + M) (H + 47M)* + w0i?]

[ -]

+ [0+ M E? + 0] [(v + ) (H + 4r M) + 7]

[(2) -]
+ 4y(H + 27 M)w

: {[(72 + NI + w?][(v? + M) (H + 47 M)? +we?]
) -1 -

Ny 2+ 1
w=p=— =
No

(36)

O)o(l2

(4H + 12rM)a* + (H + 10z M) +
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and D(w) is obtained from N(w) by reversing the sign
of ~.
Now let w=wy+dw. Neglecting higher powers of dw,

one finds
[( w )2 1:| 1/2 {1 n wdw (bw)? } 37)
— ) = g _
We w2t 2002
where

o=g/(2) -1

is the ratio of the amplitudes of the transverse and longi-
tudinal components of the magnetic field. Expanding
N(w) in powers of éw, one obtains

N(w):NO+N16w+N2(6w)2+ (38)
where
9 9 Y
Ny = 8(v*+ M) (H + 27 M)%wi’a (1 -+ 772 —W)
Ny = 8(y2 + \)(H + 2rM)%wo(2a2 + 1)
b4
. 1 —I— e —— )
< Vvt A+ N
Ny = 4(v* + A)(H + 2r M)
: {<4H + 12rM)a? + (3H 4 107 M)
+—7—_(H+27rM) <2a2+1 —-i>} (39)
Vi + A a2 :

From (35), (38), and (39) the reverse to forward ratio is

14+ b + as(w)?
R = Ruax 40
(80, ) = Reoslon) [ oo (40)

where

Y

V7N @

1
(H + er)(2a2 +1— -—2)
a

Oy =

2(H 4+ 2nM)wo®a® (1

Y
)
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and B is obtained from s by reversing the sign of . It
is obvious from (41) that 8; is much larger than «, for
A/v<1. For this reason an expansion of R in powers of
dw converges very slowly, but an expansion of 1/R in
powers of dw should converge rapidly. If higher powers
of 6w are again neglected, (14) is obtained from (40) and

2 2
<_E) = B2 — aa.

A simple expression for the bandwidth is obtained in the

(42)
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limit \/y<1. The «ay term of (42) can be neglected if
only the lowest order of A/v is taken into account. In
this approximation

Bo = 20/ en? - (43)
B8s 1 1 1 2 M ‘
1+7+—w<phﬁ~w-
a 2at e/ H+ 2zM

Eq. (15) is now obtained by expressing H in terms of
the resonance frequency.

Analysis of Microwave Measurement Techniques by

Means of Signal Flow Graphs*

J. K. HUNTONY

Summary—Microwave measurement techniques can be analyzed
more simply by using signal flow graphs instead of the customary
scattering matrices to describe the microwave networks used in the
measuring system. This is because the flow graphs of individual
networks are simply joined together when the networks are cas-
caded and the solution for the system can be written down by in-
spection of the over-all flow graph by application of the nontouching
loop rule. This paper reviews the method of setting up flow graphs
of microwave networks and the rule for their solution. A single di-
rectional-coupler reflectometer system for measuring the reflection
coefficient of a load is then analyzed by this method. The analysis
shows how augxiliary tuners can be used to cancel residual error
terms in the measurement of the magnitude of the reflection coeffi-
cient at a particular frequency. The analysis also shows how an addi-
tional tuner can be used to measure the phase angle of the reflection
coefficient. These reflectometer techniques are particularly useful
in the measurement of very small reflections.

INTRODUCTION

HE signal flow graph is a method of writing a set

of equations, whereby the wvariables are repre-

sented by points and the interrelations by directed
lines giving a direct picture of signal flow. The algebra
of flow graphs leading to solutions by direct inspection
has been developed by S. J. Mason and others at the
Massachusetts Institute of Technology.!* When micro-
wave network equations are written in scattering matrix
form the corresponding flow graph is particularly useful
because, in this case, the flow graph of a system of cas-

* Manuscript received by the PGMT, September 14, 1959; re-
vised manuscript received November 25, 1959.

1 Hewlett-Packard Co., Palo Alto, Calif.

1S, J. Mason, “Feedback theory—some properties of signal
flow graphs,” Proc. IRE, vol. 41, p. 1144-1156; September 1933.

28, J. Mason, “Feedback theory—further properties of signal
flow graphs,” Proc. IRE, vol. 44, pp. 920-926; July, 1956.

caded networks is constructed simply by joining to-
gether the flow graphs of the individual networks, and
the solution is then available directly.

One of the best applications of the flow graph method
is in the analysis of measuring techniques and the de-
termination of residual errors. It is the intention here to
review the mechanics of the method and to apply it in
analyzing the microwave reflectometer system used for
measuring the reflection coefficient of a load. This sys-
tem has been in general use for some time,? and has been
analyzed recently by Engen and Beatty* who showed
how tuners could be used to reduce residual errors to a
negligible value when measuring the magnitude of the
reflection coefficient. Their result will be derived here by
the flow graph method. In addition, a technique for
measuring the phase angle of the reflection coefficient
will be presented.

OnE- AND Two-PorT NETWORK FLOW GRAPHS

Fig. 1 shows some simple flow graphs used as building
blocks. In Fig. 1(a) the general two-port network is
shown as specified by its scattering matrix coefficients.
Here a; and a. are the complex entering wave ampli-
tudes, while b; and b, are the outgoing wave amplitudes
at ports 1 and 2 of the network. These are represented
in the flow graph as points or “nodes.” The nodes are

3 J. K. Hunton and N. L. Pappas, “The -hp- microwave reflectom-
eters,” Hewlett-Packard J., vol. 6, pp. 1-7; September—October;
1954.

4 G. F. Engen and R. W, Beatty, “Microwave reflectometer tech-
niques,” IRE TrANs. oN MicROWAVE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 351-355; July 1959.



